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Abstract. The objective of this study is to make a comparison of surface roughness for various types of contact lenses (CLs), 
generated by the manufacturing process and to determine the roughness parameters of 3D surface using atomic force microscopy 
(AFM). Contact lenses commercially available from two manufacturers: Johnson & Johnson Vision Care (Jacksonville, USA) and 
CIBA Vision Corp. (Grosswallstadt, Germany) were investigated. Two lenses from each of the four contact lenses groups, 
manufactured by cast-moulding, were used in experiments. For imaging surface roughness of contact lenses on nanometer scale, we 
employed atomic force microscopy in tapping mode in an aqueous environment. Three parameters obtained by atomic force 
microscopy (Sa, Sq and St) were used in evaluation of contact lenses surface roughness. A comparison of surface roughness for the 
probed contact lenses was made. The surface roughness have a considerable influence on biocompatibility and generates important  
information about the material surface quality. The results obtained in this study may assist researchers in developing and 
prescribing contact lenses with optimal performance characteristics. 
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1. INTRODUCTION 

A contact lens (CL), also known as a contact, is a 
corrective, cosmetic, or therapeutic lens usually placed 
on the cornea of the eye [1, 2].  

The biocompatibility assessment of contact lenses 
involves multidisciplinary work teams that use an agreed 
range of methodologies, the accreditation of 
participating testing laboratories, and the adoption of 
different rigorous protocols based by quality certified 
reference materials. 

During the past decades, several different microscopy 
and spectroscopy techniques (these include X-rays 
photoemission spectroscopy, scanning electron 
microscopy and atomic force microscopy) have been 
applied to the evaluation the materials surface roughness 
of contact lenses [3]. 

The ability of a contact lens to be biocompatible with the 
ocular surface is limited by different factors such as 
hypoxia, dryness, or mechanical trauma [4]. 

The main features of a CL material are those related to 
the surface wettability (hydrophilicity, hydrophobicity), 
surface topography, electrostatic charge, bulk matrix, 
hydration, and oxygen permeability; properties related to 
the mechanical behavior, elastic modulus, flexure and 
hardness, and hydraulic and ionic permeability; the 
degradation profile and toxicity of degradation products 
[5 – 8]. 

The surface characteristics of CLs is a key factor in 
understanding of its clinical performance in the ocular 
environment, but are difficult to measure, evaluate and 
quantify [9 - 12]. 

The CLs surface characteristics are referred to the 
physicochemical surface properties and surface 
topography.  

A CL surface has a 3D particular topography, generated 
by the manufacturing process.  

3D surface characterization of CLs is an integral part of 
quality control process and permits a better 
understanding of the functional performance of CLs 
surfaces and innovative new designs [13]. Also, it 
permits to understand the interaction of contact lens 
biomaterials with the ocular surface [14 - 17]. 

To help understand the complexity of phenomena such 
as contacting surfaces [18], friction [19 - 22] and 
lubrication surface [23 - 31], how and where protein 
molecules and contaminants adhere to the CLs [32 - 39], 
the topography of CLs surfaces can be mapped in great 
detail with AFM at nanometer spatial resolution [40]. 

 

2. THE SURFACE AMPLITUDE PARAMETERS 

Surface topography is the 3D representation of the finer 
irregularities of the surface texture, usually including 
those irregularities that result from the inherent action of 
the manufacturing process. 

Considering a surface topography z(xi, yj) defined in a 
rectangular coordinating system OXYZ, with M and N 
being the measurement points on OX and OY axes 
respectively (i = 1,…, M and j = 1, …, N). If lx and ly are 
the lengths on OX axis and OY axis of the measured 
surface A, than it could be expressed as: 
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The S amplitude parameters are defined as [41]: 

a) The arithmetic mean deviation of the surface (Sa) is 
the arithmetic mean of the absolute values of the surface 
departures from the mean plane and is given by: 
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b) The root mean square deviation of the surface (Sq or 
RMS) is defined as: 
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c)  The vertical distance between the highest peak and 
the lowest surface point (St) is defined as: 

             | | SvSpSt −=    (5) 
where Sp and Sv are the highest peak and the lowest 
valley of the surface respectively, 
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3. EXPERIMENTAL PROCEDURE 

Contact lenses commercially available from two 
manufacturers: Johnson & Johnson Vision Care 
(Jacksonville, USA) and CIBA Vision Corp. 
(Grosswallstadt, Germany) were investigated.  

Specifications of the contact lenses used in this study are 
listed in Table 1. 
 

Table 1. Specifications of the contact lenses 
Contact lenses  Manufacturer Material 
Acuvue 
Advance 

Johnson & Johnson 
Vision Care 

Galyfilcon 
A 

Acuvue 2 Johnson & Johnson 
Vision Care 

Etafilcon A 

Focus Dailies CIBA Vision Nefilcon A 
Focus Night 
& Day 

CIBA Vision Lotrafilcon 
A 

Two lenses from each of the four contact lenses groups, 
manufactured by cast-moulding, were used in 
experiments. Only the anterior surface of each sample 
was evaluated. 

Before AFM imaging, every CL was received in original 
container filled with a physiological saline solution from 
the manufacturer and was removed with a sterile silicone 
protected tweezers.  

A small piece of the contact lens was obtained and fixed 
with an adhesive onto a sample holder without inducing 
material bending. During AFM imaging, to maintain its 
hydration, the same saline solution used to store the 
contact lens was used.  

Topographic analysis of the CLs surfaces was performed 
with an atomic force microscope (Nanoscope III, Digital 
Instruments, Santa Barbara, CA) which was operated in 
tapping mode in an aqueous environment using the 
liquid cell of the AFM.  

Cantilevers with a nominal force constants of k = 0.58 
[N/m] and oxide sharpened Si3N4 tips (Olympus, 
Tokyo, Japan) were used for measurements. 

The measurements of each sample were made over on 4 
different reference areas of 4 µm x 4 µm, to verify the 
reproducibility of the observed features. After AFM 
imaging in the tapping mode the sample can be used 
again. The experiments were made at room temperature 
(21 - 24 °C) and approximately 50 % relative humidity.  

For analyze of AFM images and evaluation of surface 
roughness parameters Nanoscope III software was used. 

Three quantitative parameters were used to characterize 
the morphology and roughness of the CL surface: the 
arithmetic mean deviation of the surface (Sa), the root 
mean square deviation of the surface (Sq) and vertical 
distance between the highest peak and the lowest surface 
point (St). A comparison of surface roughness for the 
tested contact lenses was made. 

The Kruskal-Wallis test was used to statistically 
compare the differences among CLs values for each type 
of CL model. When statistical significance was found, 
the difference between two groups was further compared 
using the Mann-Whitney U test. The Kruskal-Wallis and 
Mann-Whitney U tests were also used to compare data 
between the two CL models of same dioptric power. 
Differences with a P value of 0.05 or less were 
considered statistically significant. 
 

4. RESULTS 

AFM images revealed at the contact lenses surfaces a 
particular surface structure which are evident at all 
magnification range. 

The surface roughness parameters of CLs are shown as 
mean ± standard deviation (SD) in Table 2. 
Table 2. The values of surface roughness of contact lenses 

obtained by AFM measurements 
The values of surface roughness Contact  

lenses Sa  
[nm] 

Sq  
[nm] 

St 
[nm] 

Acuvue 
Advance 

2.75 ± 0.74 3.98 ± 0.61 31.12 

Acuvue 2 2.94 ± 0.79 4.17 ± 0.68 35.72 
Focus Dailies 3.25 ± 0.82 4.45 ± 0.73 37.18 
Focus Night 
& Day 

3.58 ± 0.89 4.63 ± 0.72 41.12 
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The four contact lenses groups showed significantly 
different surface topography with very fine nano-
irregularities due to the particularity of CLs fabrication 
processes. 

 

5. DISCUSSION 

The surface roughness of each investigated contact lens 
is according required clinically levels of stability, optical 
performance and biocompatibility. 

The obtained results suggest that the differences between 
the tested contact lenses have implications on their 
clinical behavior concerning deposit formation and 
bacterial colonization that  could result in subsequent eye 
infection and eye inflammation. 

 

6. CONCLUSIONS 

The atomic force microscope (AFM) is an accurate tool 
for measuring surface roughness on the nanometre scale 
[42, 43].  

CLs surface topography investigated with AFM permits 
to choose CLs more appropriate for individual patient 
characteristics and to minimize the potential for eye 
infection and eye inflammation.  

This investigation of the AFM measurement system is in 
good agreement with experimental observations from the 
literature [9, 40] and thus leads to the belief that the 
results obtained with this measuring instrument are 
reliable in the case of CLs surfaces [44 - 50]. 
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